CATEGORY THEORY CATEGORY V - TOPOLOGICAL SPACES

PAUL L. BAILEY

Definition 1 (Objects). Let X be a set. A *topology* on X is a collection of subsets $\mathcal{T} \subset \mathcal{P}(X)$ such that

- **(T1)** $\varnothing \in \mathfrak{T} \text{ and } X \in \mathfrak{T};$
- **(T2)** $\mathcal{U} \subset \mathcal{T} \Rightarrow \cup \mathcal{U} \in \mathcal{T}$;
- **(T3)** $\mathcal{U} \subset \mathcal{T}$ and \mathcal{U} finite $\Rightarrow \cap \mathcal{U} \in \mathcal{T}$.

The pair (X, \mathfrak{T}) is called a topological space.

A subset $A \subset X$ is called *open* if $A \in \mathcal{T}$, and is called *closed* if $X \setminus A \in \mathcal{T}$.

Example 1. Let X be a set and let $\mathcal{T} = \{\emptyset, X\}$. Then (X, \mathcal{T}) is a topological space and \mathcal{T} is called the *trivial* topology on X.

Example 2. Let X be a set and let $\mathcal{T} = \mathcal{P}(X)$. Then (X, \mathcal{T}) is a topological space and \mathcal{T} is called the *discrete* topology on X.

Example 3. Let X be a set and let $\mathfrak{T} = \{A \subset X \mid X \setminus A \text{ is finite }\}$. Then (X,\mathfrak{T}) is a topological space and \mathfrak{T} is called the *cofinite* topology on X.

Example 4. Let X be a set and let $\mathfrak{T} = \{A \subset X \mid X \setminus A \text{ is countable } \}$. Then (X,\mathfrak{T}) is a topological space and \mathfrak{T} is called the *cocountable* topology on X.

Definition 2. Let X be a set. A *tower* of subsets of X is a collection $\mathfrak{T} \subset \mathfrak{P}(X)$ which contains the empty set and the entire set and is totally ordered by inclusion.

Example 5. Let X be a set and \mathcal{T} a tower of subsets of X. Then \mathcal{T} is a topology on X, called a *tower topology*.

Example 6. Let X be a totally ordered set. For $a \in X$, set

$$L_a = \{ x \in X \mid x < a \}$$
 and $R_a = \{ x \in X \mid x > a \}.$

Set

$$\mathcal{L} = \{L_a \mid a \in X\} \cup \{\emptyset, X\} \quad \text{and} \quad \mathcal{R} = \{R_a \mid a \in X\} \cup \{\emptyset, X\}.$$

Then \mathcal{L} is a topology on X, called the *left order topology*, and \mathcal{R} is a topology on X, called the *right order topology*.

Example 7. Let (X, ρ) be a metric space. Let $U \subset X$ and say that U is *open* if for every $u \in U$ there exists $\epsilon > 0$ such that $x \in U$ whenever $\rho(x, u) < \epsilon$. Let \mathfrak{T} denote the collection of open sets. Then (X, \mathfrak{T}) is a topological space.

Date: Tuesday, February 27, 2018.

Definition 3 (Subobjects). Let (X, \mathcal{T}) be a topological space and let $Y \subset X$. The relative topology on Y with respect to \mathcal{T} is

$$\mathcal{U} = \{ U \subset X \mid U = O \cap Y \text{ for some } O \in \mathcal{T} \}.$$

Then \mathcal{U} is a topology on Y, and the topological space (Y,\mathcal{U}) is called a *subspace* of the topological space (X,\mathcal{T}) .

Definition 4 (Neighborhoods). Let (X, \mathcal{T}) be a topological space, and let $x \in X$. An *open neighborhood* of x is an open set $U \in \mathcal{T}$ with $x \in U$. A *neighborhood* of x is a subset of X which contains an open neighborhood of X.

Definition 5 (Morphisms). Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces. Let $f: X \to Y$ and let $x \in X$. We say that f is *continuous at* x if for every neighborhood V of f(x) there exists a neighborhood U of x such that $f(U) \subset V$.

Let $A \subset X$. We say that f is *continuous on* A if f is continuous at x for every $x \in A$. We say that f is *continuous* if f is continuous on X.

We will show that the composition of continuous functions is continuous. Thus, topological spaces together with continuous functions form a category.

Proposition 1. A function $f: X \to Y$ is continuous if and only if the preimage of every open set in Y is open in X.

Proposition 2. The composition of continuous functions is continuous.

Definition 6. Let X and Y be topological spaces. A homeomorphism from X to Y is a bijective function which is continuous with a continuous inverse. Two spaces are said to be homeomorphic if there exists a homeomorphism between them.

So, homeomorphism is isomorphism in the category of topological spaces.

Department of Mathematics, BASIS Scottsdale $Email\ address$: pbailey@basised.com